Extensions 1→N→G→Q→1 with N=C52 and Q=C4oD4

Direct product G=NxQ with N=C52 and Q=C4oD4
dρLabelID
C4oD4xC52200C4oD4xC5^2400,204

Semidirect products G=N:Q with N=C52 and Q=C4oD4
extensionφ:Q→Aut NdρLabelID
C52:(C4oD4) = D5wrC2:C2φ: C4oD4/C1C4oD4 ⊆ Aut C52108+C5^2:(C4oD4)400,207
C52:2(C4oD4) = D20:5D5φ: C4oD4/C4C22 ⊆ Aut C52804-C5^2:2(C4oD4)400,164
C52:3(C4oD4) = D20:D5φ: C4oD4/C4C22 ⊆ Aut C52404C5^2:3(C4oD4)400,165
C52:4(C4oD4) = D10.9D10φ: C4oD4/C4C22 ⊆ Aut C52404C5^2:4(C4oD4)400,167
C52:5(C4oD4) = Dic10:5D5φ: C4oD4/C4C22 ⊆ Aut C52404+C5^2:5(C4oD4)400,168
C52:6(C4oD4) = Dic5.D10φ: C4oD4/C22C22 ⊆ Aut C52404C5^2:6(C4oD4)400,173
C52:7(C4oD4) = D10.4D10φ: C4oD4/C22C22 ⊆ Aut C52404-C5^2:7(C4oD4)400,174
C52:8(C4oD4) = C5xC4oD20φ: C4oD4/C2xC4C2 ⊆ Aut C52402C5^2:8(C4oD4)400,184
C52:9(C4oD4) = C20.50D10φ: C4oD4/C2xC4C2 ⊆ Aut C52200C5^2:9(C4oD4)400,194
C52:10(C4oD4) = C5xD4:2D5φ: C4oD4/D4C2 ⊆ Aut C52404C5^2:10(C4oD4)400,186
C52:11(C4oD4) = C20.D10φ: C4oD4/D4C2 ⊆ Aut C52200C5^2:11(C4oD4)400,196
C52:12(C4oD4) = C5xQ8:2D5φ: C4oD4/Q8C2 ⊆ Aut C52804C5^2:12(C4oD4)400,188
C52:13(C4oD4) = C20.26D10φ: C4oD4/Q8C2 ⊆ Aut C52200C5^2:13(C4oD4)400,198


׿
x
:
Z
F
o
wr
Q
<